Section 7

Behavioral Modeling

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Behavioral Modeling

Behavioral Modeling enables you to describe a system
at a high level of abstraction

Use Behavioral Modeling to describe the functionality
of the system.

Verilog uses high-level language constructs much like
a traditional programming language.

Behavioral modeling in Verilog is described by

specifying a set of concurrently active procedural
blocks.

RTL code is a subset of Behavioral modeling. Some
behavioral constructs are synthesizable.

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Structured Procedures

e There are two procedure statements in Verilog
— always
— initial

« All behavioral modeling statements appear
within an always or initial block.

« Each always and initial block represents
separate activity within the module
(concurrency).

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Procedural Blocks

~+ Procedural blocks are constructed from the following -
components:

— Procedural assignment statements
— High-level constructs
— Timing Controls

v
=R
E

initial
______ repeats T
based on

- signal changes -

executes
once

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Procedural Assignments

« Assignments made in procedural blocks are called
procedural assignments

module adder (out, a, b, cin);
Procedural block executes input a, b, cin;

whenever a, b, or ¢ changes. output [1:0] out;

\ wire a, b, CiIl;
reg half sum, half carry;
) reg4.:0] out;
All signals on the left hand
side must be defined as always @(a or b or cin)

i begin
register data type (such as \ g

. half carry=a”b " cin;
reg). Ifundeclared, Verilog ™ .17 qinr = ((a & b) | (a & 1b & cin) | (la & b & cin)):

defaults to a 1-bit wire. out = {half carry, half sum};
end

endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Procedural Execution Control

« Execution of procedural blocks can be specified in
three different ways

— Simple delays: #<delay>
» Specify delay before or after execution for a number of time steps.
— Edge-sensitive controls: always (@(<edge> <signal>)

« Execution occurs only on a signal edge. Optional keyword
‘negedge’ or ‘posedge’ can be used to specify signal edge for
execution.

— Level sensitive controls: wait(<expr>)

» Execution waits until the expression is true. If the expression is
already true, block executes immediately.

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Procedural Execution Control (cont.)

Delay Always Wait
module ...
module ...
always @(posedge clk)
module ... begin always @(posedge clk)
L) <=d; begin
initial begin en((li v%ai t(t==5)
#10 a=b; begin
eildo c=d always @(y or z y <=1z
begin end
endmodule Xx=y &z end
endmodule

end
endmodule

concurrent

execution

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Intra-Assignments Execution

» Intra-Assignments removes the need for temporary storage.

— Syntax: LHS = <execution control> RHS

begin equivalent
temp = b;
@(posedge clk) a = temp
end

a = (@(posedge clk) b;

begin)
temp = b; equlvalent

osedge clk
%gosedge clkg > a = repeat (3) @(posedge clk) b;

@(posedge clk) a = temp;
end

Note: intra-assignments are not synthesizable

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

statements together.

— Two types of blocks (can be used with ‘initial’ and ‘always’

blocks)

Block Statements

« Block statements are used to group two or more

» Sequential: enclosed with keywords ‘begin’ and ‘end’.

 Parallel: enclosed with keywords ‘fork’ and ‘join’.

always (@(stuff)
begin
a=1;
#5 b=2;
#10c=3;
end

always (@(stuff)
fork

a=1;
#5 b=2;
#10c=3;
join

initial
begin
a=1;
#5 b=2;
#10c=3;
end

initial
fork
a=1;
#5 b=2;
#10c=3;
join

Note: fork/join constructs are not synthesizable

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

Some Things to Remember!

* begin and end, fork and join, are only needed when

there are two or more statements in a procedural block.

« Beware of race conditions in procedural blocks.

always @(stuff)
‘begin’ and ‘end’ begin
not needed a=b;
A end
always @(stuff)
fork
a=b; //whatvalue will ‘a’ get?
C Ra(.:e. — 1 ® b=g;
ondition
c=3;
join

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

10

Non-blocking vs. Blocking Assignments

» A blocking assignment is executed immediately

* A non-blocking assignment is executed in two steps:
— All RHS values are stored by the simulator.

— At the next timing control event, the assignment is executed and the LHS
is assigned the stored values.

Effectively swaps always @(posedge clk) always @(posedge clk)
the values of aand b ~ begin begin
~A 2a<=Db; a=b;
b<=a; b=a;
end T end \
I
Operator for non-blocking What values do

1 : (13 __¢¢
assignments 18 © <= ‘a’ and ‘b’ get??

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

11

Non-blocking vs.

Blocking Assignment Synthesis

always @(posedge clk)
begin
a<=b;
b<=a;
end

SET

a D Q b D

Q

CLR

SET

CLR

Q

Q

The non-blocking assignment infers two
flops with b as the intermediate variable

The blocking assignment implies ‘a’ is a
temporary variable that is optimized away in

synthesis

always @(posedge clk)
begin
a=b;
b=a;
end
b D SET Q
CLR 6

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

12

Conditional Statements: IF

* You can use if and else if statements in Verilog.

— ‘if’ and ‘else if’ statements can be nested within other ‘if’,
and ‘else if’ statements.

always @(posedge clk)
begin
if (stuff)
bird <= bat;
else if (small)
if (frog)
cow <= pig;
else
dog <= cat;
else
sheep <= goat;
end

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

13

Conditional Statements: case

‘case’ 1s a conditional statement that executes based on whether
the expression matches a specified condition.

— ‘case’ does a bit-by-bit comparison searching for an exact match (‘x> and
‘z’ included).

— ‘default’ statement is optional, but its usage is part of good programming.

always @(rega)
case (rega)
2’b00 :a=2;
2’b01 :a=5;
2’bl10:a=7;
2°bl11 : begin a = 3;
#5a=1;
end
default : a =0;
endcase

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

14

Conditional Statements: casex and casez

» casex or casez allows the user to specify “don’t care”

conditions in the case statement.

¢, ¢

— ‘casex’ uses ‘x’, ‘z’, and ‘?’ as “don’t care”.

— ‘casez’ uses ‘7z’ and ‘?’ as “don’t care”.

always @(rega) — Only cares about MSB
casex (rega/
4°b17?7? fa=2;

4°b01??:a=15;
4°b001? :a=17;
4’0001 : a=3;
default: a = 1"bx; +——_
endcasex

a = ‘x’ value (different from “don’t care”)

Hint: When using casex or casez, only use ‘?’ as don’t care so as not to confuse with the ‘x’
(unknown), and ‘z’ (high impedance) states.

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

15

Looping Statements: Repeat

* A ‘repeat’ loop executes a block of statements for a
fixed number of times.

— Syntax: repeat (<integer>)

Counter Clock Pulse
initial begin initial begin
a=0; clk=0;
repeat (40) begin repeat (100) begin
a=a+tl1; #5 clk = ~clk;
end end
end end

Note: repeat is not synthesizable

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

16

Looping Statements: while

* A ‘while’ loop executes a block of statements when
the condition of the ‘while’ loop is true.
— Syntax: while (<condition>)

initial fork initial fork
a=0; clk =0;
repeat (40) begin repeat (100) begin
a=a+tl; #5 clk = ~clk;
end end
while (a < 40) begin while (clk) begin
z=7+2; a=a+1;
end end
join join

Note: while is generally not synthesizable

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

17

Looping Statements: forever

* A ‘forever’ loop executes a block of statements until the
simulation is stopped by a control external to the ‘forever’ loop
(such as $finish in separate procedural block).

— Syntax: forever

— Should be used as the last statement of a procedural block (all statements
past ‘forever’ will never be reached to execute).

— Generally used in testbenches. Effective modeling for continuous clock
signals.

initial begin

clk =0;

forever #10 clk = ~ clk;
end

Note: forever is not synthesizable

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

18

Looping Statements: for

* A ‘for’ loop executes a block of statements until the
loop condition is met.

— Syntax: for (<initialization> ; <condition> ; <operation>)

module (...)

reg [15:0] mem [1023:0];
integer i,
always @(init) begin
for(1i=0;1<1024;i=1+1)
begin
mem[i] = 16’b0;
$display(“Initializing memory location %d to 07, i);
end
end

Note: well structured for loops are synthesizable

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

19

Continuous Assignments

« Combinational logic can be modeled with continuous
assignments.

Continuous assignments take place outside of procedural blocks.

Continuous assignments can only contain simple LHS assignment
statements.

The LHS of a continuous assignment must be of ‘net’ data type.
The nature of a continuous assignment makes the ‘@’ control

unnecessary.
wire, out, stuff, q;

assign out = ~in;
assign stuff = (inputl & !input2) | input3;
assign q=sel ?b: a;

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

20

RTL Example: 4-bit Ripple Counter

 4-bit ripple counter:

— Can be modeled behaviorally as a simple adder.

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

21

Ripple Counter

module ripple (Q, CLOCK, CLEAR);

input CLOCK, CLEAR;

output [3:0] Q;

reg [3:0] Q;

always @(negedge CLOCK or posedge CLEAR) begin
if (CLEAR)
Q<=0;
else

Q<=Q+1;

end

endmodule

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

CLOCK

Ripple Counter

I CCAD

Ripple Counter Test

° The COunteI’ IS module ripple tb;
tested the same e CLK CLEAR:

way the dataﬂ()w ripple ul (.Q(Q), .CLOCK(CLK), .CLEAR(CLEAR));

model was tested. | eiwas#10CLK=~CLK;
initial begin
$monitor("CLEAR = %b Q = %d",CLEAR,Q);
45 {CLK,CLEAR} =2'b01;
#3 CLEAR =0;
#100 CLEAR = I;
#3 CLEAR = 0:;
#350 $stop;

end // initial begin

endmodule // tb

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

23

Ripple Counter Test Results

|1 00ns |ZDDns |

]
L (N ER R COD SN CF (O EN ER I CHD D I (A CH E 2

CLEAR

H*
Q
=
™
>
=~

CLEAR
CLEAR
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEA
CLEAR
CLEA
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR

AR AIRRIAIAIAIITRIR

S

DD DD D DD OO~ OO0 O — X

leyohoyeyoyohoyoyoyohohoyoyohoyoyohohohoyoyohoyoyoyoyoye)

O 01NN PR WN—= OB WN—OO X

—_ e e
DNk W N = O

N —- o

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

24

Review

What type of logic do you typically model with a
continuous assignment?

What is the difference between blocking and non-
blocking assignments?

What is the main difference between a procedural
block with begin - end and a procedural block with
fork - join?

What does the keyword ‘posedge’ mean?

What are the two procedural conditional constructs in
Verilog?

Verilog HDL (EE 499/599 CS 499/599) — © 2004 AMIS

25

